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Abstract – The exponential growth of sensor 

deployments in smart cities, healthcare, and 

environmental monitoring requires scalable and 

cost-efficient long-term data storage. While 

cloud-based storage offers high availability and 

elasticity, dependence on a single provider 

introduces risks such as service outages, vendor 

lock-in, and data loss. Existing fault-tolerant 

models like DepSky are not optimized for high-

frequency, real-time sensor data or long-term 

cost efficiency. This paper presents an enhanced 

intercloud storage framework that extends the 

DepSky-A and DepSky-CA models with 

streaming capabilities, erasure coding, 

compression, and client-side confidentiality 

mechanisms. The proposed architecture 

supports real-time ingestion, block-level 

verification, and Byzantine fault tolerance across 

untrusted cloud providers. We implemented and 

deployed the system across four major 

commercial cloud platforms and evaluated it 

using a simulated workload of 150TB/year of 

sensor data. Results demonstrate that the 

enhanced Streaming DepSky-CA model achieves a 

sustained throughput of ~1.45 GB/sec, over 

99.95% availability, up to 20% cost savings 

compared to traditional replication, and an 

average 17% reduction in storage size due to 

compression. These findings position the 

proposed model as a practical and efficient 

solution for long-term, privacy-preserving, and 

resilient sensor data storage in intercloud 

environments. 

Index Terms – Intercloud Storage, Sensor Data 

Retention, Byzantine Fault Tolerance, Erasure 

Coding, Streaming Data Storage, Cost-Efficient 

Cloud Storage, Secure Multi-Cloud 

Architecture, IoT Data Archiving. 

I. INTRODUCTION 

The expansion of Internet of Things (IoT) devices 

and large-scale sensor networks has led to the 

continuous generation of high-frequency, high-

volume data streams [1]. In smart cities, 

environmental monitoring, healthcare systems, and 

industrial automation, sensors routinely generate 

terabytes to petabytes of data annually [2]. Despite 

the vast amount of data and its crucial significance, 

long-term storage systems must be robust, secure, 

and scalable. 

Outsourcing data storage has become a viable option 

thanks to cloud computing, especially object storage 

services provided by commercial cloud providers 

[3]. High availability, cost per use, and flexibility are 

features of these services. However, relying on a 

single cloud provider presents challenges such as 

vendor lock-in, limited fault tolerance, and uncertain 

long-term data availability [4]. Moreover, traditional 

storage strategies—primarily based on block or file 

storage with full replication—are not optimized for 

streaming sensor data or cost efficiency at scale [5]. 

Most existing cloud storage models are not designed 

to handle real-time efficient streaming sensor data, 

especially when targeting long-term retention in 

multi-cloud environments [6]. Key challenges 
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include High storage and bandwidth costs associated 

with naive replication across providers, limited 

support for confidentiality and data integrity, 

especially in untrusted cloud environments, 

inefficiencies in throughput and latency due to 

block-oriented or batch-based designs, lack of 

adaptive models that balance cost, performance, 

availability, and fault tolerance simultaneously. 

While fault-tolerant models like DepSky provide 

theoretical guarantees using quorum-based 

replication, they are block-based and not designed 

for streaming workloads. Further, they do not 

inherently optimize for storage cost or data 

confidentiality, which is critical for sensitive sensor 

data retention. 

Our motivation stems from the need to build a cost-

aware, performance-optimized, and resilient storage 

architecture for streaming sensor data across 

intercloud environments. As sensor networks scale 

and regulations tighten around data privacy and 

availability (e.g., incompetent healthcare or national 

infrastructure systems), a new generation of storage 

models is required to Handle continuous data 

streams without delay or memory bottlenecks. 

Maintain Byzantine fault tolerance using quorum-

based storage across multiple cloud providers. 

Reduce redundancy and maximize store capacity by 

employing compression and erasure coding. Use 

client-side encryption and secret sharing 

mechanisms to separate keys and maintain secrecy. 

Help stakeholders choose the best storage plan by 

presenting a quantitative cost-benefit analysis.  

This paper proposes and evaluates a streaming-

enabled, cost-performance-optimized intercloud 

object storage model that builds upon the DepSky 

architecture. The core contributions of this work are 

as follows: 

• Extension of DepSky-A and DepSky-CA 

into streaming-capable models that support 

real-time ingestion and verification of 

sensor data blocks. 

• Integration of erasure coding and 

compression techniques to reduce total 

storage and bandwidth overheads while 

preserving data recoverability. 

• Deployment and benchmarking of both 

models across four commercial cloud 

providers, simulating large-scale IoT data 

ingestion and retrieval scenarios. 

• Quantitative evaluation of throughput, 

latency, availability, and cost-per-GB/year 

for 150TB of annual sensor data, with 

results showing up to 20% cost savings 

compared to traditional replication 

methods. 

• This guide helps system designers and 

urban planners select optimal storage 

strategies for long-term sensor data 

archiving in smart environments. 

II. RELATED WORK 

Initially, RAID (Redundant Array of Independent 

Disks) was utilized for hardware-level redundancy 

in fault-tolerant storage. In order to improve 

performance and reliability, Patterson et al. [7] 

invented RAID, a technique that combines many 

physical disks into a single logical unit. RAID does 

not scale over cloud infrastructures, though, and is 

only applicable to single-site deployments. 

 To address distributed fault tolerance, models like 

RAIN (Redundant Array of Independent Net-

storages) were proposed by Zhao et al. [8], which 

segment and obfuscate data across multiple 

providers. Though effective for confidentiality, 

RAIN relies on a trusted orchestration layer and 

cannot operate with passive storage providers alone. 

Several systems have attempted to provide fault-

tolerant storage in cloud environments. Notably, 

HAIL (High-Availability and Integrity Layer) by 

Bowers et al. [9] enables cloud servers to prove data 

integrity using Proof of Retrievability and Proof of 

Data Possession techniques. However, these 

solutions require periodic interaction from clients 

and assume an active server model, increasing both 

complexity and cost. 

MetaStorage (Bermbach et al., [10]) and Octopus 

extend high availability using federated object 

stores, but are often tied to specific platforms (e.g., 

Google App Engine) and do not support streaming 

workloads or long-term cost optimization. 
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RACS (Redundant Array of Cloud Storage) by Abu-

Libdeh et al. [11] introduces a proxy-based 

mechanism for striping data across clouds to avoid 

vendor lock-in. While RACS supports transparent 

migration and redundancy, it depends on an 

intermediate coordination service and is limited by 

its synchronous replication model, which can incur 

high costs. 

Similarly, NubiSave (Spillner et al., [12]) allows 

data distribution across cloud providers based on 

user-defined policies. However, its focus is more on 

policy-driven selection rather than stream or cost 

optimization, and it relies on FUSE-based file 

interfaces that are not ideal for high-speed ingestion. 

A breakthrough came with DepSky by Bessani et al. 

[13], which proposed two models—DepSky-A for 

availability, and DepSky-CA for confidentiality and 

integrity using encryption and secret sharing. 

DepSky introduced Byzantine quorum replication, 

requiring n≥3f+1n cloud providers to tolerate ff 

faults. Its passive design made it compatible with 

commercial clouds and removed the need for cloud-

side computation.However, the original DepSky 

models are block-based and require complete file 

reads/writes, making them inefficient for real-time 

sensor streams.  

Incorporating zlib-based compression before 

encryption, as done in our work, has shown practical 

benefits in reducing redundant metadata (e.g., 

repeated sensor IDs and timestamps), especially in 

IoT use cases where streaming data is highly 

structured. 

III. METHODS & MATERIALS 

The proposed study investigates the cost-

performance optimization of long-term sensor data 

retention in intercloud object storage by extending 

the Streaming DepSky model. Our methodology 

focuses on enhancing data availability, reducing 

storage costs, and ensuring robust data integrity to 

manage the ever-increasing volume of sensor data 

generated from IoT and environmental monitoring 

systems.  

A. Dataset Description  

To evaluate the proposed Streaming DepSky 

model's performance and scalability, we generated a 

synthetic dataset that emulates real-world sensor 

network conditions. The data simulates high-

frequency measurements from a large-scale 

deployment of wireless sensor nodes, commonly 

found in smart infrastructure, environmental 

monitoring, and industrial IoT applications. 

Every sensor record contains crucial information 

and measurement elements, including distinct 

sensor identification, timestamp, and measured 

values. The dataset generation assumptions 

grounded in realistic operational factors ensure 

practical relevance for performance benchmarking 

in intercloud storage systems.  

Table 1: Format of Simulated Sensor Data 

Field Description Size 

(Bytes) 

SensorId Unique 128-bit 

identifier 

16 

Timestamp Unix timestamp 

(64-bit integer) 

8 

ValueX First measurement 

value (float64) 

8 

ValueY Second 

measurement 

value (float64) 

8 

Total — 40 

 

Table 1 defines the structure of each measurement, 

while Table 2 presents the expected data generation 

rate under various sampling frequencies. Each 

record is fixed at 40 bytes to ensure uniform block-

level streaming and checksum calculation across all 

cloud nodes. 

Table 2: Estimated Data Volume Based on 

Sampling Rate (10,000 Sensors) 

Samplin

g Rate 

Measurement

s per Second 

Data 

Rate 

(MB/sec

) 

Annual 

Storage 

(GB) 

1 per 

minute 

167 0.006 200 

4 per 

minute 

667 0.025 800 

1 per 

second 

10,000 0.40 12,000 
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10 per 

second 

100,000 4.00 120,000 

100 per 

second 

1,000,000 40.00 1,200,00

0 

 

These projections help determine the system's 

throughput needs and demonstrate the scalability 

requirements for real-time sensor data storage in a 

distributed fault-tolerant cloud environment. To 

generate the dataset, a Python-based simulation that 

emulates sensor behavior under configurable 

sampling frequencies was implemented. This 

approach allowed for extensive performance testing 

of the storage model, including varying data 

ingestion rates and concurrency levels across 

multiple cloud endpoints. 

B. Data Storage and Processing 

The exponential growth of sensor data, especially 

from large-scale wireless sensor networks (WSNs), 

has introduced critical data storage and processing 

challenges. Each node in a sensor network generates 

timestamped readings—often in high frequency—

leading to massive, real-time data streams that must 

be efficiently stored, reliably accessed, and securely 

maintained over long durations. Traditional on-

premise storage systems lack the scalability, fault 

tolerance, and cost efficiency required for such 

workloads.  

• Data Storage in Sensor Networks: Sensor 

networks often consist of thousands of 

distributed, low-power nodes generating 

measurements in one or more dimensions 

(e.g., temperature, vibration, location). 

These measurements are typically small 

(∼40 bytes), but their cumulative volume 

can rapidly reach the petabyte scale. For 

example, a network of 10,000 sensors, each 

generating 100 measurements per second, 

produces over 1.2 petabytes yearly. These 

datasets must be stored in a form that 

supports long-term archiving, secure 

access, and on-demand retrieval. 

 

• Cloud Object Storage: Cloud computing is 

an appealing option for sensor data 

workloads because it offers an elastic, pay-

per-use storage architecture. Object storage 

offers the finest combination of scalability, 

fault tolerance, and simplicity among the 

many storage models—database storage, 

file storage, and object storage.  Object 

storage treats data as immutable blobs 

accessed via APIs, independent of 

underlying disk structures. Popular 

systems like Amazon S3, Google Cloud 

Storage, and Azure Blob Storage 

exemplify this model. Our architecture 

converts each sensor reading stream into 

objects (or blocks) stored across multiple 

providers. This abstraction makes Cloud-

agnostic storage possible to increase 

redundancy and prevent vendor lock-in. 

However, depending on a single cloud 

provider has drawbacks, such as service 

interruptions, data lock-in, and potential 

Byzantine errors. For this reason, we 

employ a multi-cloud approach.  

• Challenges in Intercloud Storage:  Using 

multiple cloud providers in parallel 

introduces its challenges: 

- Data consistency across clouds 

with different APIs. 

- Fault tolerance in the face of cloud 

provider failures or misbehavior. 

- Efficient data streaming, since 

traditional models assume static 

files and batch processing. 

Our proposed solution is the DepSky 

quorum-based replication protocol to 

support real-time data streaming, fine-

grained integrity checks, and block-

wise verification. Instead of 

processing complete files in memory, 

sensor data is ingested, verified, and 

replicated in blocks across a quorum of 

cloud providers. 
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• Stream-Based Processing: From Batch to 

Real-Time: Traditionally, cloud processing 

frameworks such as Hadoop rely on batch 

models, ill-suited for real-time sensor 

streams. Modern architecture must 

combine batch and stream processing to 

handle historical and real-time data 

efficiently, as the Lambda Architecture 

outlines. In our model: 

- Streaming ingestion allows 

immediate processing and storage 

of incoming sensor data. 

- Block-level checksums enable 

early integrity detection. 

- Append-only streams support 

resilience against cloud-side 

corruption. 

C. Proposed Model 

Our model  is a comparative deployment and 

evaluation of the two Streaming DepSky variants—

DepSky-A and DepSky-CA—focused specifically 

on optimizing the cost-performance trade-off for 

long-term sensor data storage across multiple 

clouds. The following subsections detail the 

architectural components, algorithms, and system 

configurations used in this work. 

• System Architecture Overview:  Our 

architecture builds upon the original 

DepSky model by incorporating real-time 

streaming capabilities and intercloud 

object storage abstractions. As illustrated 

in Figure 1 of the thesis, the core system is 

composed of three entities: 

 

- Writers (Sensor Servers): These 

ingest high-frequency sensor data 

streams. 

- Readers (Client Applications): 

These retrieve historical or real-

time data for analysis. 

- Cloud Providers (Storage 

Backends): We use four major 

object storage platforms to ensure 

Byzantine fault tolerance. 

 

Each cloud provider supports GET, PUT, 

DELETE, and LIST operations. To 

preserve portability and cost-efficiency, we 

model these clouds as passive storage 

nodes and avoid relying on provider-side 

computation or active intermediaries. 

 

Figure 1: Architecture of File Storage 

• Streaming-Based Storage Design: The 

methodology centers around processing 

input as sensor data streams rather than 

monolithic files. This allows for real-time, 

memory-efficient ingestion and 

progressive verification. Let, the incoming 

sensor stream be represented as: 

x = [ 𝑥0, 𝑥1, 𝑥2, . . . . . . . . . . 𝑥𝑛] 

Each data element is 40 bytes, based on the 

typical schema: 

 

- SensorId (16 bytes), 

- Timestamp (8 bytes), 

- ValueX, ValueY (2 × 8 bytes). 

 

For optimal buffering, the stream is divided 

into blocks of size λ=4096 bytes. The 

transformation function r(x,λ) yields: 

xr = r (x, λ) = [𝛽0, 𝛽1, . . . . . . . . . . . 𝛿] 

 

where, δ is the final, potentially smaller 

block (∣δ∣=∣x∣ mod  λ). 

• Integrity and Metadata Management:  

To ensure the integrity of each block during 

transmission and retrieval, cryptographic 

checksums are calculated using SHA-256: 

𝒄𝒊  =  𝐻(𝛽𝑖) 

These checksums are stored as metadata 

alongside the block indices in a metadata 

file M. The metadata file is digitally signed 

using an unforgeable signature mechanism: 
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- Writers use a private key 

𝐾𝑝𝑟 𝑡𝑜 𝑠𝑖𝑔𝑛: 

σ = sign (M, 𝐾𝑝𝑟) 

- Readers verify using the public 

key 𝐾𝑝𝑢 :  

verify  (M, σ, 𝐾𝑝𝑢) ∊ {T, ⊥} 

• Stream Splitting and Cloud 

Distribution: We employ a stream 

decomposition strategy to achieve fault 

tolerance and enable efficient distribution 

across multiple clouds. Each block βi is 

split into mmm pieces using a 

decomposition function db, such that any 

f+1 of the mmm pieces are sufficient to 

reconstruct βi. 

Mathematically:  

db (𝛽𝑖 , 𝑚 , 𝑓) = [𝛽𝑖𝑜 , 𝛽𝑖𝑙 , 𝛽𝑖𝑚] 

• Storage Operations and Fault 

Tolerance:  Data blocks and metadata are 

stored using quorum-based consensus. For 

f potential Byzantine failures, we require: 

n ≥ 3f + 1 

We implement: 

 

- Write Quorum: Store each block 

on at least n-f clouds. 

- Read Quorum: Retrieve from 

f+1 non-faulty clouds. 

 

This guarantees that even if f clouds act 

maliciously or become unavailable, data 

can still be reconstructed correctly and 

verified via checksums and signatures. 

 

• Compression Optimization: Given high 

redundancy in sensor data (e.g., repeating 

SensorIDs and timestamps), zlib-based 

compression is applied before encryption 

and storage. Compression improves cost-

efficiency without compromising latency 

due to its fast runtime. 

• Cost Modeling:  A comprehensive cost 

model was developed by incorporating: 

- Storage cost per GB per provider 

- Egress and retrieval costs 

- Redundancy and overhead 

factors 

- Compression ratios 

 

Total cost C was calculated as: 

C= 𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒  +  𝐶𝑒𝑔𝑟𝑒𝑠𝑠  +  𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  +  𝐶𝑠𝑎𝑣𝑖𝑛𝑔𝑠 

Simulations were conducted using a dataset 

of 150TB collected over a year and stored 

across all configurations. 

IV. RESULT & DISCUSSION 

To assess the effectiveness of our proposed 

models—Streaming DepSky-A and Streaming 

DepSky-CA—we conducted extensive experiments 

focusing on throughput, latency, availability, and 

cost-efficiency across a multi-cloud storage 

environment. The simulations were run on four 

commercial cloud platforms using a standardized 

virtualized infrastructure. The results demonstrate 

significant improvements in cost-performance 

trade-offs for long-term sensor data retention, 

especially at the petabyte scale 

A. Experimental Setup 

We set up our prototype using a client-server model 

on several virtual machines spread across different 

cloud providers and geographic regions. Each 

virtual machine (VM) was outfitted with eight 

virtual CPUs, sixteen gigabytes of random-access 

memory, and SSD storage to provide consistent 

performance: the client-side simulated 10,000 

sensors, each transmitting two-dimensional, real-

time data to replicate a real-world sensor network.  

As a result, 40 bytes of data payload were produced 

for each record. During testing, we gradually 

increased the load—from an initial 10,000 records 

per second to more than 480,000 per second per 

node—to observe how the system handled various 

traffic levels. We also experimented with different 

block sizes, quorum configurations, and data 

verification techniques to see how these factors 

influenced system throughput and fault tolerance. 

B. Throughput and Latency Performance 

To evaluate the StreamingDepSky system's real-

time efficiency, extensive performance tests were 

conducted under varying data sizes and 

multithreaded access patterns, reflecting realistic 
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workloads generated by distributed IoT ecosystems. 

These experiments focused primarily on measuring 

the system's throughput (in kilobytes per second) 

and latency (in milliseconds) across different HTTP 

verbs (GET, PUT, DELETE, LIST), comparing two 

implementations: StreamingDepSky-A and 

StreamingDepSky-CA. 

 

 

Figure 2: Performance of StreamingDepSky-A per 

verb 

Figures 2 illustrate the throughput trends of 

StreamingDepSky-A under increasing file sizes. 

The throughput, measured against log2(Filesize) in 

bits, rapidly increases as the file size grows, 

eventually saturating at around 1.6 GB/sec during 

PUT operations in a 32-thread scenario. This 

translates to a handling capability of over 500,000 

sensor data records per second, demonstrating the 

system's strong suitability for high-volume ingestion 

typical of IoT-based sensor networks. 

Interestingly, despite the additional overhead from 

encryption and erasure coding, StreamingDepSky-

CA depicted in Figure 3 maintained a peak 

throughput of approximately 1.45 GB/sec for PUT 

operations. This minimal performance drop—less 

than 10%—highlights the efficiency of the 

integrated cryptographic mechanisms. A similar 

trend was observed in GET operations, where 

throughput scaled linearly with the file size before 

tapering off at higher loads, confirming consistent 

scalability. 

 

 

Figure 3: Performance of StreamingDepSky-CA 

per verb 

On average, both models' PUT latency remained 

below 15 ms per block, even under high 

concurrency. The 90th percentile values slightly 

exceeded this threshold at peak loads, particularly in 

the CA variant. Still, overall, the increase was 

negligible, validating the robustness of the block-

streaming approach under load stress. 

The DELETE operation in StreamingDepSky-CA 

exhibited a stable latency profile, with the median 

response time consistently below 1300 ms and the 

90th percentile hovering just above 1600 ms—

indicative of the predictable performance overhead 

from the secure deletion process. LIST operations 

experienced higher latency variances, with spikes in 

the 90th percentile as data volumes increased; 

however, the average and median response times 

remained well within acceptable thresholds, 

demonstrating dependable behavior for directory-

type queries. 

Summary of Findings 

• StreamingDepSky-A attained high PUT 

throughput (~1.6 GB/sec) with excellent 

scalability under 32-thread concurrency. 

• StreamingDepSky-CA, while 

incorporating security measures 

(encryption + erasure coding), sustained a 

competitive throughput of ~1.45 GB/sec, 

indicating optimized cryptographic 

integration. 
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• Latency across all verbs (PUT, DELETE, 

LIST) stayed within operational limits, 

with average block latency under 15 ms for 

PUT operations even at scale. 

• 90th percentile latency spikes were 

observed for LIST and DELETE 

operations, yet they remained predictable 

and did not significantly affect average 

performance. 

These results confirm the architectural strength of 

StreamingDepSky in handling real-time, high-

throughput sensor workloads with secure data 

management while preserving low-latency 

guarantees even under extreme concurrency. 

C. Availability Across Operations 

Availability metrics were measured per HTTP verb 

(GET, PUT, DELETE, LIST) under normal and 

failover conditions. Figure 4 displays the 

comparative views of availability metrics across 

operations. 

 

Figure 4:  Comparative views of availability 

metrics across operations 

Key Observations: 

- Both models achieved >99.95% availability 

across all verbs. 

- Slight variations were noted under 

simulated provider failure scenarios, where 

Byzantine-resilient quorum logic preserved 

accessibility. 

- DepSky-CA showed slightly higher 

availability in GET operations due to 

improved key redundancy from Shamir’s 

secret sharing scheme. 

D. Fault Tolerance and Byzantine Resilience 

Our simulations verified the system’s ability to 

tolerate up to f=1 faulty cloud provider without 

data loss or corruption. 

• Metadata integrity and checksum 

validation (via SHA-256) successfully 

detected all injected corruptions. 

• Stream reconstruction from f+1 valid 

shares using erasure coding in DepSky-CA 

was consistently successful across 100% of 

trials. 

This confirms that both the stream splitting strategy 

and quorum design adhere to the theoretical 

guarantees described in our system model. 

E. Storage Efficiency and Compression Impact 

Data compression was applied using zlib before 

encryption (for DepSky-CA) and before streaming 

(for DepSky-A). 

• On average, we observed a 17% reduction 

in storage size, particularly for high-

frequency sensor data with repetitive 

timestamps and identifiers. 

• This effect is amplified in large datasets, 

offering meaningful long-term cost savings 

without sacrificing throughput. 

F. Cost Analysis and Savings 

Table 3 presents detailed breakdowns that break 

down annual costs per cloud provider and the 

aggregated cost per storage approach. Using erasure 

coding, three storage strategies were compared: 

traditional full replication, StreamingDepSky-A, 

and StreamingDepSky-CA. 
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Table 3: Break down annual costs per cloud 

provider and the aggregated cost per storage 

approach 

Storage 

Strategy 

Data 

Stor

ed 

(TB) 

Annu

al 

Cost 

(USD

) 

Space 

Efficien

cy 

Availabil

ity 

Full 

Replicati

on (4x) 

600 $47,6

00 

1.0 99.98% 

Streamin

g 

DepSky-

A 

600 $45,3

00 

1.0 99.97% 

Streamin

g 

DepSky-

CA 

200 $36,9

00 

0.33 

(3/4 

EC) 

99.96% 

 

The results indicate a clear economic advantage 

when utilizing the Streaming DepSky-CA model. 

By leveraging 3-of-4 erasure coding combined with 

stream compression, the required physical storage 

footprint was reduced significantly to approximately 

200 TB from 600 TB in full replication schemes. 

This reduction translated into a cost savings of 

nearly 20% annually compared to the traditional 4× 

replication method. Despite a marginal drop in 

availability (from 99.98% to 99.96%), the trade-off 

is acceptable in most practical deployments, 

especially when weighed against the substantial 

storage efficiency gains and lower operational 

expenses. Interestingly, the Streaming DepSky-A 

model, while preserving a full data copy (1.0 

efficiency), offered modest cost benefits over classic 

replication through its dynamic quorum 

management and write optimization techniques. 

However, due to the absence of encoding or 

compression, it lacked the transformative savings 

seen in DepSky-CA. 

From a cost-efficiency perspective, Streaming 

DepSky-CA emerges as the most economically 

viable approach for large-scale, long-term cloud 

storage, especially in environments where read 

availability is prioritized but not strictly mission-

critical at all times. This makes it a strong candidate 

for archival, IoT aggregation, and distributed 

sensing applications, where availability and 

affordability must be carefully balanced. 

V. CONCLUSION 

This work addresses the growing challenge of 

storing large-scale, continuous sensor data in a fault-

tolerant, secure, and cost-effective manner across 

heterogeneous cloud environments. By extending 

the DepSky model to support streaming data, our 

framework accommodates high-throughput, real-

time ingestion while maintaining integrity and 

confidentiality through block-level checksums, 

symmetric encryption, and secret sharing. Our 

analysis shows Streaming DepSky-CA provides the 

optimal trade-off between performance, availability, 

and storage efficiency by combining erasure coding 

with compression.  In particular, it attains robust 

fault tolerance, fast throughput, and quantifiable 

savings in storage space and cost.  The results affirm 

that our design suits IoT ecosystems requiring 

scalable, resilient, and compliant data retention 

strategies. While the current system effectively 

addresses cost-performance trade-offs, several 

avenues remain for future enhancement, integrating 

intelligent cloud selection algorithms that adapt 

based on cost, latency, or SLA violations in real-

time, exploring carbon footprint-aware data 

placement strategies to align with green computing 

objectives, extending the model to include edge-

layer pre-processing or filtering to reduce upstream 

cloud storage load, decentralizing metadata and 

signature verification using blockchain or trusted 

execution environments for increased robustness, 

coupling the storage framework with real-time 

analytics platforms to support end-to-end IoT data 

lifecycles. 
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