
Journal of Online Engineering Education

ISSN: 2158-9658 Volume: 12 Issue: 1

Article Received: 10 April 2021 Revised: 18 May 2021 Accepted: 20 June 2021

__

14

Available @ http://onlineengineeringeducation.com

June 2021

Cost-Performance Optimization for Long-

Term Sensor Data Retention in Intercloud

Object Storage

Shaik Jaffar Hussain1, Dr. S. Bhuvaneeswari2

1Research Scholar, Department of Computer Science and Engineering, Dr. M.G.R Educational and Research Institute,

Chennai. Email: jaffar.thebest@gmail.com
2Associate Professor, Department of Computer Science and Engineering, Dr. M.G.R Educational and Research Institute,

Chennai.

Abstract – The exponential growth of sensor

deployments in smart cities, healthcare, and

environmental monitoring requires scalable and

cost-efficient long-term data storage. While

cloud-based storage offers high availability and

elasticity, dependence on a single provider

introduces risks such as service outages, vendor

lock-in, and data loss. Existing fault-tolerant

models like DepSky are not optimized for high-

frequency, real-time sensor data or long-term

cost efficiency. This paper presents an enhanced

intercloud storage framework that extends the

DepSky-A and DepSky-CA models with

streaming capabilities, erasure coding,

compression, and client-side confidentiality

mechanisms. The proposed architecture

supports real-time ingestion, block-level

verification, and Byzantine fault tolerance across

untrusted cloud providers. We implemented and

deployed the system across four major

commercial cloud platforms and evaluated it

using a simulated workload of 150TB/year of

sensor data. Results demonstrate that the

enhanced Streaming DepSky-CA model achieves a

sustained throughput of ~1.45 GB/sec, over

99.95% availability, up to 20% cost savings

compared to traditional replication, and an

average 17% reduction in storage size due to

compression. These findings position the

proposed model as a practical and efficient

solution for long-term, privacy-preserving, and

resilient sensor data storage in intercloud

environments.

Index Terms – Intercloud Storage, Sensor Data

Retention, Byzantine Fault Tolerance, Erasure

Coding, Streaming Data Storage, Cost-Efficient

Cloud Storage, Secure Multi-Cloud

Architecture, IoT Data Archiving.

I. INTRODUCTION

The expansion of Internet of Things (IoT) devices

and large-scale sensor networks has led to the

continuous generation of high-frequency, high-

volume data streams [1]. In smart cities,

environmental monitoring, healthcare systems, and

industrial automation, sensors routinely generate

terabytes to petabytes of data annually [2]. Despite

the vast amount of data and its crucial significance,

long-term storage systems must be robust, secure,

and scalable.

Outsourcing data storage has become a viable option

thanks to cloud computing, especially object storage

services provided by commercial cloud providers

[3]. High availability, cost per use, and flexibility are

features of these services. However, relying on a

single cloud provider presents challenges such as

vendor lock-in, limited fault tolerance, and uncertain

long-term data availability [4]. Moreover, traditional

storage strategies—primarily based on block or file

storage with full replication—are not optimized for

streaming sensor data or cost efficiency at scale [5].

Most existing cloud storage models are not designed

to handle real-time efficient streaming sensor data,

especially when targeting long-term retention in

multi-cloud environments [6]. Key challenges

mailto:jaffar.thebest@gmail.com

Journal of Online Engineering Education

ISSN: 2158-9658 Volume: 12 Issue: 1

Article Received: 10 April 2021 Revised: 18 May 2021 Accepted: 20 June 2021

__

15

Available @ http://onlineengineeringeducation.com

June 2021

include High storage and bandwidth costs associated

with naive replication across providers, limited

support for confidentiality and data integrity,

especially in untrusted cloud environments,

inefficiencies in throughput and latency due to

block-oriented or batch-based designs, lack of

adaptive models that balance cost, performance,

availability, and fault tolerance simultaneously.

While fault-tolerant models like DepSky provide

theoretical guarantees using quorum-based

replication, they are block-based and not designed

for streaming workloads. Further, they do not

inherently optimize for storage cost or data

confidentiality, which is critical for sensitive sensor

data retention.

Our motivation stems from the need to build a cost-

aware, performance-optimized, and resilient storage

architecture for streaming sensor data across

intercloud environments. As sensor networks scale

and regulations tighten around data privacy and

availability (e.g., incompetent healthcare or national

infrastructure systems), a new generation of storage

models is required to Handle continuous data

streams without delay or memory bottlenecks.

Maintain Byzantine fault tolerance using quorum-

based storage across multiple cloud providers.

Reduce redundancy and maximize store capacity by

employing compression and erasure coding. Use

client-side encryption and secret sharing

mechanisms to separate keys and maintain secrecy.

Help stakeholders choose the best storage plan by

presenting a quantitative cost-benefit analysis.

This paper proposes and evaluates a streaming-

enabled, cost-performance-optimized intercloud

object storage model that builds upon the DepSky

architecture. The core contributions of this work are

as follows:

• Extension of DepSky-A and DepSky-CA

into streaming-capable models that support

real-time ingestion and verification of

sensor data blocks.

• Integration of erasure coding and

compression techniques to reduce total

storage and bandwidth overheads while

preserving data recoverability.

• Deployment and benchmarking of both

models across four commercial cloud

providers, simulating large-scale IoT data

ingestion and retrieval scenarios.

• Quantitative evaluation of throughput,

latency, availability, and cost-per-GB/year

for 150TB of annual sensor data, with

results showing up to 20% cost savings

compared to traditional replication

methods.

• This guide helps system designers and

urban planners select optimal storage

strategies for long-term sensor data

archiving in smart environments.

II. RELATED WORK

Initially, RAID (Redundant Array of Independent

Disks) was utilized for hardware-level redundancy

in fault-tolerant storage. In order to improve

performance and reliability, Patterson et al. [7]

invented RAID, a technique that combines many

physical disks into a single logical unit. RAID does

not scale over cloud infrastructures, though, and is

only applicable to single-site deployments.

 To address distributed fault tolerance, models like

RAIN (Redundant Array of Independent Net-

storages) were proposed by Zhao et al. [8], which

segment and obfuscate data across multiple

providers. Though effective for confidentiality,

RAIN relies on a trusted orchestration layer and

cannot operate with passive storage providers alone.

Several systems have attempted to provide fault-

tolerant storage in cloud environments. Notably,

HAIL (High-Availability and Integrity Layer) by

Bowers et al. [9] enables cloud servers to prove data

integrity using Proof of Retrievability and Proof of

Data Possession techniques. However, these

solutions require periodic interaction from clients

and assume an active server model, increasing both

complexity and cost.

MetaStorage (Bermbach et al., [10]) and Octopus

extend high availability using federated object

stores, but are often tied to specific platforms (e.g.,

Google App Engine) and do not support streaming

workloads or long-term cost optimization.

Journal of Online Engineering Education

ISSN: 2158-9658 Volume: 12 Issue: 1

Article Received: 10 April 2021 Revised: 18 May 2021 Accepted: 20 June 2021

__

16

Available @ http://onlineengineeringeducation.com

June 2021

RACS (Redundant Array of Cloud Storage) by Abu-

Libdeh et al. [11] introduces a proxy-based

mechanism for striping data across clouds to avoid

vendor lock-in. While RACS supports transparent

migration and redundancy, it depends on an

intermediate coordination service and is limited by

its synchronous replication model, which can incur

high costs.

Similarly, NubiSave (Spillner et al., [12]) allows

data distribution across cloud providers based on

user-defined policies. However, its focus is more on

policy-driven selection rather than stream or cost

optimization, and it relies on FUSE-based file

interfaces that are not ideal for high-speed ingestion.

A breakthrough came with DepSky by Bessani et al.

[13], which proposed two models—DepSky-A for

availability, and DepSky-CA for confidentiality and

integrity using encryption and secret sharing.

DepSky introduced Byzantine quorum replication,

requiring n≥3f+1n cloud providers to tolerate ff

faults. Its passive design made it compatible with

commercial clouds and removed the need for cloud-

side computation.However, the original DepSky

models are block-based and require complete file

reads/writes, making them inefficient for real-time

sensor streams.

Incorporating zlib-based compression before

encryption, as done in our work, has shown practical

benefits in reducing redundant metadata (e.g.,

repeated sensor IDs and timestamps), especially in

IoT use cases where streaming data is highly

structured.

III. METHODS & MATERIALS

The proposed study investigates the cost-

performance optimization of long-term sensor data

retention in intercloud object storage by extending

the Streaming DepSky model. Our methodology

focuses on enhancing data availability, reducing

storage costs, and ensuring robust data integrity to

manage the ever-increasing volume of sensor data

generated from IoT and environmental monitoring

systems.

A. Dataset Description

To evaluate the proposed Streaming DepSky

model's performance and scalability, we generated a

synthetic dataset that emulates real-world sensor

network conditions. The data simulates high-

frequency measurements from a large-scale

deployment of wireless sensor nodes, commonly

found in smart infrastructure, environmental

monitoring, and industrial IoT applications.

Every sensor record contains crucial information

and measurement elements, including distinct

sensor identification, timestamp, and measured

values. The dataset generation assumptions

grounded in realistic operational factors ensure

practical relevance for performance benchmarking

in intercloud storage systems.

Table 1: Format of Simulated Sensor Data

Field Description Size

(Bytes)

SensorId Unique 128-bit

identifier

16

Timestamp Unix timestamp

(64-bit integer)

8

ValueX First measurement

value (float64)

8

ValueY Second

measurement

value (float64)

8

Total — 40

Table 1 defines the structure of each measurement,

while Table 2 presents the expected data generation

rate under various sampling frequencies. Each

record is fixed at 40 bytes to ensure uniform block-

level streaming and checksum calculation across all

cloud nodes.

Table 2: Estimated Data Volume Based on

Sampling Rate (10,000 Sensors)

Samplin

g Rate

Measurement

s per Second

Data

Rate

(MB/sec

)

Annual

Storage

(GB)

1 per

minute

167 0.006 200

4 per

minute

667 0.025 800

1 per

second

10,000 0.40 12,000

Journal of Online Engineering Education

ISSN: 2158-9658 Volume: 12 Issue: 1

Article Received: 10 April 2021 Revised: 18 May 2021 Accepted: 20 June 2021

__

17

Available @ http://onlineengineeringeducation.com

June 2021

10 per

second

100,000 4.00 120,000

100 per

second

1,000,000 40.00 1,200,00

0

These projections help determine the system's

throughput needs and demonstrate the scalability

requirements for real-time sensor data storage in a

distributed fault-tolerant cloud environment. To

generate the dataset, a Python-based simulation that

emulates sensor behavior under configurable

sampling frequencies was implemented. This

approach allowed for extensive performance testing

of the storage model, including varying data

ingestion rates and concurrency levels across

multiple cloud endpoints.

B. Data Storage and Processing

The exponential growth of sensor data, especially

from large-scale wireless sensor networks (WSNs),

has introduced critical data storage and processing

challenges. Each node in a sensor network generates

timestamped readings—often in high frequency—

leading to massive, real-time data streams that must

be efficiently stored, reliably accessed, and securely

maintained over long durations. Traditional on-

premise storage systems lack the scalability, fault

tolerance, and cost efficiency required for such

workloads.

• Data Storage in Sensor Networks: Sensor

networks often consist of thousands of

distributed, low-power nodes generating

measurements in one or more dimensions

(e.g., temperature, vibration, location).

These measurements are typically small

(∼40 bytes), but their cumulative volume

can rapidly reach the petabyte scale. For

example, a network of 10,000 sensors, each

generating 100 measurements per second,

produces over 1.2 petabytes yearly. These

datasets must be stored in a form that

supports long-term archiving, secure

access, and on-demand retrieval.

• Cloud Object Storage: Cloud computing is

an appealing option for sensor data

workloads because it offers an elastic, pay-

per-use storage architecture. Object storage

offers the finest combination of scalability,

fault tolerance, and simplicity among the

many storage models—database storage,

file storage, and object storage. Object

storage treats data as immutable blobs

accessed via APIs, independent of

underlying disk structures. Popular

systems like Amazon S3, Google Cloud

Storage, and Azure Blob Storage

exemplify this model. Our architecture

converts each sensor reading stream into

objects (or blocks) stored across multiple

providers. This abstraction makes Cloud-

agnostic storage possible to increase

redundancy and prevent vendor lock-in.

However, depending on a single cloud

provider has drawbacks, such as service

interruptions, data lock-in, and potential

Byzantine errors. For this reason, we

employ a multi-cloud approach.

• Challenges in Intercloud Storage: Using

multiple cloud providers in parallel

introduces its challenges:

- Data consistency across clouds

with different APIs.

- Fault tolerance in the face of cloud

provider failures or misbehavior.

- Efficient data streaming, since

traditional models assume static

files and batch processing.

Our proposed solution is the DepSky

quorum-based replication protocol to

support real-time data streaming, fine-

grained integrity checks, and block-

wise verification. Instead of

processing complete files in memory,

sensor data is ingested, verified, and

replicated in blocks across a quorum of

cloud providers.

Journal of Online Engineering Education

ISSN: 2158-9658 Volume: 12 Issue: 1

Article Received: 10 April 2021 Revised: 18 May 2021 Accepted: 20 June 2021

__

18

Available @ http://onlineengineeringeducation.com

June 2021

• Stream-Based Processing: From Batch to

Real-Time: Traditionally, cloud processing

frameworks such as Hadoop rely on batch

models, ill-suited for real-time sensor

streams. Modern architecture must

combine batch and stream processing to

handle historical and real-time data

efficiently, as the Lambda Architecture

outlines. In our model:

- Streaming ingestion allows

immediate processing and storage

of incoming sensor data.

- Block-level checksums enable

early integrity detection.

- Append-only streams support

resilience against cloud-side

corruption.

C. Proposed Model

Our model is a comparative deployment and

evaluation of the two Streaming DepSky variants—

DepSky-A and DepSky-CA—focused specifically

on optimizing the cost-performance trade-off for

long-term sensor data storage across multiple

clouds. The following subsections detail the

architectural components, algorithms, and system

configurations used in this work.

• System Architecture Overview: Our

architecture builds upon the original

DepSky model by incorporating real-time

streaming capabilities and intercloud

object storage abstractions. As illustrated

in Figure 1 of the thesis, the core system is

composed of three entities:

- Writers (Sensor Servers): These

ingest high-frequency sensor data

streams.

- Readers (Client Applications):

These retrieve historical or real-

time data for analysis.

- Cloud Providers (Storage

Backends): We use four major

object storage platforms to ensure

Byzantine fault tolerance.

Each cloud provider supports GET, PUT,

DELETE, and LIST operations. To

preserve portability and cost-efficiency, we

model these clouds as passive storage

nodes and avoid relying on provider-side

computation or active intermediaries.

Figure 1: Architecture of File Storage

• Streaming-Based Storage Design: The

methodology centers around processing

input as sensor data streams rather than

monolithic files. This allows for real-time,

memory-efficient ingestion and

progressive verification. Let, the incoming

sensor stream be represented as:

x = [𝑥0, 𝑥1, 𝑥2, 𝑥𝑛]

Each data element is 40 bytes, based on the

typical schema:

- SensorId (16 bytes),

- Timestamp (8 bytes),

- ValueX, ValueY (2 × 8 bytes).

For optimal buffering, the stream is divided

into blocks of size λ=4096 bytes. The

transformation function r(x,λ) yields:

xr = r (x, λ) = [𝛽0, 𝛽1, 𝛿]

where, δ is the final, potentially smaller

block (∣δ∣=∣x∣ mod  λ).

• Integrity and Metadata Management:

To ensure the integrity of each block during

transmission and retrieval, cryptographic

checksums are calculated using SHA-256:

𝒄𝒊 = 𝐻(𝛽𝑖)

These checksums are stored as metadata

alongside the block indices in a metadata

file M. The metadata file is digitally signed

using an unforgeable signature mechanism:

Journal of Online Engineering Education

ISSN: 2158-9658 Volume: 12 Issue: 1

Article Received: 10 April 2021 Revised: 18 May 2021 Accepted: 20 June 2021

__

19

Available @ http://onlineengineeringeducation.com

June 2021

- Writers use a private key

𝐾𝑝𝑟 𝑡𝑜 𝑠𝑖𝑔𝑛:

σ = sign (M, 𝐾𝑝𝑟)

- Readers verify using the public

key 𝐾𝑝𝑢 :

verify (M, σ, 𝐾𝑝𝑢) ∊ {T, ⊥}

• Stream Splitting and Cloud

Distribution: We employ a stream

decomposition strategy to achieve fault

tolerance and enable efficient distribution

across multiple clouds. Each block βi is

split into mmm pieces using a

decomposition function db, such that any

f+1 of the mmm pieces are sufficient to

reconstruct βi.

Mathematically:

db (𝛽𝑖 , 𝑚 , 𝑓) = [𝛽𝑖𝑜 , 𝛽𝑖𝑙 , 𝛽𝑖𝑚]

• Storage Operations and Fault

Tolerance: Data blocks and metadata are

stored using quorum-based consensus. For

f potential Byzantine failures, we require:

n ≥ 3f + 1

We implement:

- Write Quorum: Store each block

on at least n-f clouds.

- Read Quorum: Retrieve from

f+1 non-faulty clouds.

This guarantees that even if f clouds act

maliciously or become unavailable, data

can still be reconstructed correctly and

verified via checksums and signatures.

• Compression Optimization: Given high

redundancy in sensor data (e.g., repeating

SensorIDs and timestamps), zlib-based

compression is applied before encryption

and storage. Compression improves cost-

efficiency without compromising latency

due to its fast runtime.

• Cost Modeling: A comprehensive cost

model was developed by incorporating:

- Storage cost per GB per provider

- Egress and retrieval costs

- Redundancy and overhead

factors

- Compression ratios

Total cost C was calculated as:

C= 𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒 + 𝐶𝑒𝑔𝑟𝑒𝑠𝑠 + 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 + 𝐶𝑠𝑎𝑣𝑖𝑛𝑔𝑠

Simulations were conducted using a dataset

of 150TB collected over a year and stored

across all configurations.

IV. RESULT & DISCUSSION

To assess the effectiveness of our proposed

models—Streaming DepSky-A and Streaming

DepSky-CA—we conducted extensive experiments

focusing on throughput, latency, availability, and

cost-efficiency across a multi-cloud storage

environment. The simulations were run on four

commercial cloud platforms using a standardized

virtualized infrastructure. The results demonstrate

significant improvements in cost-performance

trade-offs for long-term sensor data retention,

especially at the petabyte scale

A. Experimental Setup

We set up our prototype using a client-server model

on several virtual machines spread across different

cloud providers and geographic regions. Each

virtual machine (VM) was outfitted with eight

virtual CPUs, sixteen gigabytes of random-access

memory, and SSD storage to provide consistent

performance: the client-side simulated 10,000

sensors, each transmitting two-dimensional, real-

time data to replicate a real-world sensor network.

As a result, 40 bytes of data payload were produced

for each record. During testing, we gradually

increased the load—from an initial 10,000 records

per second to more than 480,000 per second per

node—to observe how the system handled various

traffic levels. We also experimented with different

block sizes, quorum configurations, and data

verification techniques to see how these factors

influenced system throughput and fault tolerance.

B. Throughput and Latency Performance

To evaluate the StreamingDepSky system's real-

time efficiency, extensive performance tests were

conducted under varying data sizes and

multithreaded access patterns, reflecting realistic

Journal of Online Engineering Education

ISSN: 2158-9658 Volume: 12 Issue: 1

Article Received: 10 April 2021 Revised: 18 May 2021 Accepted: 20 June 2021

__

20

Available @ http://onlineengineeringeducation.com

June 2021

workloads generated by distributed IoT ecosystems.

These experiments focused primarily on measuring

the system's throughput (in kilobytes per second)

and latency (in milliseconds) across different HTTP

verbs (GET, PUT, DELETE, LIST), comparing two

implementations: StreamingDepSky-A and

StreamingDepSky-CA.

Figure 2: Performance of StreamingDepSky-A per

verb

Figures 2 illustrate the throughput trends of

StreamingDepSky-A under increasing file sizes.

The throughput, measured against log2(Filesize) in

bits, rapidly increases as the file size grows,

eventually saturating at around 1.6 GB/sec during

PUT operations in a 32-thread scenario. This

translates to a handling capability of over 500,000

sensor data records per second, demonstrating the

system's strong suitability for high-volume ingestion

typical of IoT-based sensor networks.

Interestingly, despite the additional overhead from

encryption and erasure coding, StreamingDepSky-

CA depicted in Figure 3 maintained a peak

throughput of approximately 1.45 GB/sec for PUT

operations. This minimal performance drop—less

than 10%—highlights the efficiency of the

integrated cryptographic mechanisms. A similar

trend was observed in GET operations, where

throughput scaled linearly with the file size before

tapering off at higher loads, confirming consistent

scalability.

Figure 3: Performance of StreamingDepSky-CA

per verb

On average, both models' PUT latency remained

below 15 ms per block, even under high

concurrency. The 90th percentile values slightly

exceeded this threshold at peak loads, particularly in

the CA variant. Still, overall, the increase was

negligible, validating the robustness of the block-

streaming approach under load stress.

The DELETE operation in StreamingDepSky-CA

exhibited a stable latency profile, with the median

response time consistently below 1300 ms and the

90th percentile hovering just above 1600 ms—

indicative of the predictable performance overhead

from the secure deletion process. LIST operations

experienced higher latency variances, with spikes in

the 90th percentile as data volumes increased;

however, the average and median response times

remained well within acceptable thresholds,

demonstrating dependable behavior for directory-

type queries.

Summary of Findings

• StreamingDepSky-A attained high PUT

throughput (~1.6 GB/sec) with excellent

scalability under 32-thread concurrency.

• StreamingDepSky-CA, while

incorporating security measures

(encryption + erasure coding), sustained a

competitive throughput of ~1.45 GB/sec,

indicating optimized cryptographic

integration.

Journal of Online Engineering Education

ISSN: 2158-9658 Volume: 12 Issue: 1

Article Received: 10 April 2021 Revised: 18 May 2021 Accepted: 20 June 2021

__

21

Available @ http://onlineengineeringeducation.com

June 2021

• Latency across all verbs (PUT, DELETE,

LIST) stayed within operational limits,

with average block latency under 15 ms for

PUT operations even at scale.

• 90th percentile latency spikes were

observed for LIST and DELETE

operations, yet they remained predictable

and did not significantly affect average

performance.

These results confirm the architectural strength of

StreamingDepSky in handling real-time, high-

throughput sensor workloads with secure data

management while preserving low-latency

guarantees even under extreme concurrency.

C. Availability Across Operations

Availability metrics were measured per HTTP verb

(GET, PUT, DELETE, LIST) under normal and

failover conditions. Figure 4 displays the

comparative views of availability metrics across

operations.

Figure 4: Comparative views of availability

metrics across operations

Key Observations:

- Both models achieved >99.95% availability

across all verbs.

- Slight variations were noted under

simulated provider failure scenarios, where

Byzantine-resilient quorum logic preserved

accessibility.

- DepSky-CA showed slightly higher

availability in GET operations due to

improved key redundancy from Shamir’s

secret sharing scheme.

D. Fault Tolerance and Byzantine Resilience

Our simulations verified the system’s ability to

tolerate up to f=1 faulty cloud provider without

data loss or corruption.

• Metadata integrity and checksum

validation (via SHA-256) successfully

detected all injected corruptions.

• Stream reconstruction from f+1 valid

shares using erasure coding in DepSky-CA

was consistently successful across 100% of

trials.

This confirms that both the stream splitting strategy

and quorum design adhere to the theoretical

guarantees described in our system model.

E. Storage Efficiency and Compression Impact

Data compression was applied using zlib before

encryption (for DepSky-CA) and before streaming

(for DepSky-A).

• On average, we observed a 17% reduction

in storage size, particularly for high-

frequency sensor data with repetitive

timestamps and identifiers.

• This effect is amplified in large datasets,

offering meaningful long-term cost savings

without sacrificing throughput.

F. Cost Analysis and Savings

Table 3 presents detailed breakdowns that break

down annual costs per cloud provider and the

aggregated cost per storage approach. Using erasure

coding, three storage strategies were compared:

traditional full replication, StreamingDepSky-A,

and StreamingDepSky-CA.

Journal of Online Engineering Education

ISSN: 2158-9658 Volume: 12 Issue: 1

Article Received: 10 April 2021 Revised: 18 May 2021 Accepted: 20 June 2021

__

22

Available @ http://onlineengineeringeducation.com

June 2021

Table 3: Break down annual costs per cloud

provider and the aggregated cost per storage

approach

Storage

Strategy

Data

Stor

ed

(TB)

Annu

al

Cost

(USD

)

Space

Efficien

cy

Availabil

ity

Full

Replicati

on (4x)

600 $47,6

00

1.0 99.98%

Streamin

g

DepSky-

A

600 $45,3

00

1.0 99.97%

Streamin

g

DepSky-

CA

200 $36,9

00

0.33

(3/4

EC)

99.96%

The results indicate a clear economic advantage

when utilizing the Streaming DepSky-CA model.

By leveraging 3-of-4 erasure coding combined with

stream compression, the required physical storage

footprint was reduced significantly to approximately

200 TB from 600 TB in full replication schemes.

This reduction translated into a cost savings of

nearly 20% annually compared to the traditional 4×

replication method. Despite a marginal drop in

availability (from 99.98% to 99.96%), the trade-off

is acceptable in most practical deployments,

especially when weighed against the substantial

storage efficiency gains and lower operational

expenses. Interestingly, the Streaming DepSky-A

model, while preserving a full data copy (1.0

efficiency), offered modest cost benefits over classic

replication through its dynamic quorum

management and write optimization techniques.

However, due to the absence of encoding or

compression, it lacked the transformative savings

seen in DepSky-CA.

From a cost-efficiency perspective, Streaming

DepSky-CA emerges as the most economically

viable approach for large-scale, long-term cloud

storage, especially in environments where read

availability is prioritized but not strictly mission-

critical at all times. This makes it a strong candidate

for archival, IoT aggregation, and distributed

sensing applications, where availability and

affordability must be carefully balanced.

V. CONCLUSION

This work addresses the growing challenge of

storing large-scale, continuous sensor data in a fault-

tolerant, secure, and cost-effective manner across

heterogeneous cloud environments. By extending

the DepSky model to support streaming data, our

framework accommodates high-throughput, real-

time ingestion while maintaining integrity and

confidentiality through block-level checksums,

symmetric encryption, and secret sharing. Our

analysis shows Streaming DepSky-CA provides the

optimal trade-off between performance, availability,

and storage efficiency by combining erasure coding

with compression. In particular, it attains robust

fault tolerance, fast throughput, and quantifiable

savings in storage space and cost. The results affirm

that our design suits IoT ecosystems requiring

scalable, resilient, and compliant data retention

strategies. While the current system effectively

addresses cost-performance trade-offs, several

avenues remain for future enhancement, integrating

intelligent cloud selection algorithms that adapt

based on cost, latency, or SLA violations in real-

time, exploring carbon footprint-aware data

placement strategies to align with green computing

objectives, extending the model to include edge-

layer pre-processing or filtering to reduce upstream

cloud storage load, decentralizing metadata and

signature verification using blockchain or trusted

execution environments for increased robustness,

coupling the storage framework with real-time

analytics platforms to support end-to-end IoT data

lifecycles.

References

[1] D. A. Patterson, G. Gibson, and R. H. Katz, “A

case for redundant arrays of inexpensive disks

(raid),” in Proceedings of the 1988 ACM

SIGMOD international conference on

Management of data, 1988, pp. 109–116.

[2] G. Zhao, M. G. Jaatun, A. Vasilakos, Å. A.

Nyre, S. Alapnesy, Q. Yue, and Y. Tang,

“Deliverance from trust through a redundant

array of independent net-storages in cloud

computing,” in 2011 IEEE Conference on

Journal of Online Engineering Education

ISSN: 2158-9658 Volume: 12 Issue: 1

Article Received: 10 April 2021 Revised: 18 May 2021 Accepted: 20 June 2021

__

23

Available @ http://onlineengineeringeducation.com

June 2021

Computer Communications Work-shops

(INFOCOM WKSHPS). IEEE, 2011, pp. 625–

630.

[3] K. D. Bowers, A. Juels, and A. Oprea, “Hail:

A high-availability and integrity layer for

cloud storage,” in Proceedings of the 16th

ACM conference on Computer and

communications security, 2009, pp. 187–198.

[4] D. Bermbach, M. Klems, S. Tai, and M.

Menzel, “Metastorage: A federated cloud

storage system to manage consistency-latency

tradeoffs,” in 2011 IEEE 4th International

Conference on Cloud Computing. IEEE, 2011,

pp. 452–459.

[5] H. Abu-Libdeh, L. Princehouse, and H.

Weatherspoon, “Racs: a case for cloud storage

diversity,” in Proceedings of the 1st ACM

symposium on Cloud computing, 2010, pp.

229–240.

[6] J. Spillner, J. Müller, and A. Schill, “Creating

optimal cloud storage systems,” Future

Generation Computer Systems, vol. 29, no. 4,

pp. 1062–1072, 2013.

[7] A. Bessani, M. Correia, B. Quaresma, F.

André, and P. Sousa, “Depsky: dependable and

secure storage in a cloud-of-clouds,” Acm

transactions on storage (tos), vol. 9, no. 4, pp.

1–33, 2013.

