
JOURNAL OF ONLINE ENGINEERING EDUCATION, VOL. 11, NO. 2, ARTICLE 1 
 

 

An Embedded Systems Remote Course 
André Sanches Fonseca Sobrinho1 

1 Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Brazil 
 
 
 

Abstract— This paper presents an embedded systems course 
offered remotely to undergraduate students of the 
Universidade Tecnológica Federal do Paraná (UTFPR), 
Cornélio Procópio campus, during COVID-19 pandemic. 
The course allowed undergraduate students of control and 
automation and computer and electronic engineering to 
explore the use of the real time operation system in 
microcontrolled systems using different free software, 
including one that emulates the development kit used in 
practical lab classes. Student feedback and course evaluation 
are along presented, with reflections on the differences 
between in-class and remote modes. 

Index Terms— Embedded systems, microcontroller, 
teaching, remote classes. 
 

Introduction 

Embedded System can be defined as a device that 
contains hardware and software components to perform a 
single function and to work with minimal or no human 
interaction. These systems operate in constrained 
environments where memory, computing power, and 
power supply are limited [1]. Such type of systems can be 
found inevery aspect of our daily lives: electronic toys, 
cellular phones, TVs, cars, trains, medical systems such as 
pace makers and ventilators, safety-critical systems such as 
anti-lock brakes and airbag systems and defense systems 
such as missile guidance [2]. The adoption of 
microcontrollers in embedded systems as a near universal 
solution in electronic design has come about in part because 
of their use as miniature computers, but mainly because of 
their low cost and rapid application development facility 
[3]. 

The Embedded Systems course is a important 
professional course in colleges and universities, which have 
strong characteristics of practicality and applicability [4], 
which focuses on the use of real-time operating systems 
(RTOS) in microcontrollers. This is verified in the 
pedagogical projects of the bachelor’s degree in computer, 
electronic and control and automation engineering in most 
public and private universities worldwide [5-10]. 

At Universidade Tecnológica Federal do Paraná 
(UTFPR), Cornélio Procópio campus, the embedded 
systems presential classes in control and automation, 
computer and electronic engineering degrees were 
suspended from March 16, 2020, two weeks after the start 
of classes due COVID-19 pandemic. Therefore, based on 
experience in that campus, this paper presents in details the 
structure of an embedded systems course to be offered 
remotely using tools like Google Meet for synchronous 
learning, and free software such as C18 compiler [11], 

MPLAB Integrated Development Environment (IDE) [12],  
FreeRTOS [13] and PicSimLab [14] for the students 
performed the proposed exercises on their computers, 

including exercises that would be executed using 
development kits in practical laboratory classes. Student 
feedback and course evaluation are along presented, along 
with reflections on the differences between classroom and 
remote modes. It is hoped that this article can help other 
institutions to develop similar embedded systems courses. 

The organization of the rest of the article is as follows. 
Second section sumarizes the structure on embedded 
systems in-class course and the third section presents in 
details how the topics of the embedded systems remote 
course are explored, using exercises showed in on-line 
theorical classes and included in the student’s exercises 
lists. Fourfth section describes the course assessment from 
students and their feedback. Fifth section concludes our 
article. 

I. EMBEDDED SYSTEMS IN-CLASS COURSE OVERVIEW 

The Embedded Systems course offered every semester 
to Control and Automation, Electronic and Computer 
Engineering bachelors requires the Microcontrollers course 
as a prerequisite for students. The C18 compiler, the 
MPLAB integrated development environment and the 
PIC18F4550 microcontroller were previously used in the 
Microcontrollers course and continue to be used in the 
Embedded Systems course, thus avoiding that students 
need to know the software and the structure related to a new 
microcontroller. The FreeRTOS is adopted in the course 
due to its gratuity and compatibility with PIC18F4550 
microcontroller, in addition to offering all the functionality 
of a real time operating system [15]. 

The Embedded Systems course is organized into topics, 
summarized in the Table 1.  

In each week of the presential course, theorical classes 
are between 50 and 90 minutes in classroom, in which the 
topics are presented by the professor using Datashow. 
Practical classes are 100 minutes in laboratory, in which the 
students gathered in groups use computer and development 
kit based on the PIC18F4550 microcontroller to implement 
the exercises. 

At the 8th week, the students send the first list of exercises 
implemented in laboratory on institutional Moodle and 
solve the first writing test. At the 15th week, the students 
send the second list of exercises on institutional Moodle 
implemented in laboratory and solve the second writing 
test. If necessary, the students solve a complementary 
writing test at the 17th week. 

 
 
 
 
 



JOURNAL OF ONLINE ENGINEERING EDUCATION, VOL. 11, NO. 2, ARTICLE 1 
 

 

TABLE I 
TOPICS DURATION OF THE EMBEDDED SYSTEMS COURSE. 

Topics Description Duration 

Firmware 
architectures 

The cooperative multitasking is 
presented like an alternative to one 
single loop for that tasks can be 
performed at certain times. Examples 
applied in embedded systems are also 
presented                    

Weeks  
1-3 

RTOS 

The functional characteristics of the 
real time operation system, with 
emphasis on preemption, are presented 
and compared to the functional 
characteristics of the cooperative 
multitasking   

Week 4 

FreeRTOS 

The FreeRTOS functions regarding 
tasks management and examples 
applied in embedded systems are 
presented        

Weeks  
5-7 

Queues 

The functional structure of queues, 
FreeRTOS functions regarding queues 
management and examples applied in 
embedded systems are presented 

Week 9 

Binary 
semaphores 

The functional structure of binary 
semaphores, FreeRTOS functions 
regarding binary semaphores 
management and examples applied in 
embedded systems are presented             

Week 10 

Counting 
semaphores 

The functional structure of counting 
semaphores, FreeRTOS functions 
regarding counting semaphores 
management and examples applied in 
embedded systems are presented               

Week 11 

Event group The functional structure of event 
group, FreeRTOS functions regarding 
event group management and 
examples applied in embedded 
systems are presented                

Week 12 

Resources 
management 

Resource management using critical 
sections and binary semaphores are 
explored in this topic through 
examples applied in embedded 
systems 

Weeks 
13-14 

II. EMBEDDED SYSTEMS REMOTE COURSE 

In the embedded systems remote course are presented the 
same topics showed in the Table 1. In each week, on-line 
theorical classes are 50 minutes using the Google Meet. 
The presence of students is not mandatory and classes are 
recorded and made available on the institutional Moodle for 
later viewing. In these classes the content of each topic is 
explored through practical examples based in C codes using 
the MPLAB and C18 compiler (shown in Figure 1). A 
document with the content of each topic and the practical 
examples are previously available to students on 
institutional Moodle. 

 

Figure 1.  On-line theorical class using Google Meet, Mplab and C18 
compiler. 

In the same on-line theorical classes, the compiled C 
codes are subsequently implemented in the PicSimLab free 
software. PICSimLab means PIC Simulator Laboratory and 
it is a real-time emulator of development boards with 
integrated MPLAB debugger. It supports some PIC 
microcontrollers and has functionality almost identical to 
the development kit used by the students in laboratory 
classes (shown in Figure 2), allowing some hardware 
manipulation that cannot be reached using virtual 
laboratories [16, 17]. 

 

 

Figure 2.  Development kit used by the students in laboratory classes. 

Figure 3 shows the screen of an on-line theorical class 
using PicSimLab software. Practical classes are replaced by 
offline activities, in which the students gathered in remote 
groups use their own computers and the PicSimLab to 
implement the exercises of the lists to be delivered later on 
institutional Moodle. The writing tests are replaced by 
exercises lists personalized for each remote student group 
that must be delivered within 1 day on institutional Moodle. 

 

 
Figure 3.  On-line theorical class using PicSimLab software. 

The topics of the embedded systems remote course are 
briefly explored below, using exercises showed in on-line 
theorical classes and included in the student’s exercises 
lists. 

A. Firmware architectures 

This topic covers the use of cooperative multitasking 
architecture as an alternative to one single loop, which 
doesn’t ensure that tasks are executed within defined time 
interval [18]. The cooperative multitasking architecture, 
besides to use a microcontroller timer to ensure that all 
tasks are executed within a defined time interval, it also to 



JOURNAL OF ONLINE ENGINEERING EDUCATION, VOL. 11, NO. 2, ARTICLE 1 
 

 

run few tasks in each loop ensuring that the sum of time 
duration of the tasks is less than the defined time interval.  

 
Exercise 1: Implement a cooperative multitasking system 

based on the PIC18F4550 [19] using the PicSimLab 
software, in which the following tasks must be performed 
without delay: 

- a first square wave must be generated with 6.25Hz 
frequency and 50% duty cycle on the I/O pin RD1, that is, 
80ms at high logic level and 80ms at low logic level; 

- a second square wave must be generated with 3.125Hz 
frequency and 50% duty cycle on the I/O pin RD2, that is, 
160ms at high logic level and 160ms at low logic level; 

- a third square wave must be generated with 1.5625Hz 
frequency and 50% duty cycle on the I/O pin RD3, that is, 
320ms at high logic level and 320ms at low logic level. 

Note 1: maximum two tasks in each loop. 
Note 2: show the code, the scope screen with RD1 and 

RD2 pins and the scope screen with RD3 pin. 
 
In the code a microcontroller timer must be configured 

with 80ms base time, once this value being multiple for all 
tasks. The first task must be allocated in the top slot of the 
cooperative multitasking algorithm to be run in each 80ms. 
The others tasks must be allocated in the cases of the 
cooperative multitask algorithm to be run in each 160ms. 
The third task will need an additional logic to be run in each 
320ms. Maximum two tasks (Task1/Task2 or 
Task1/Task3) are run in each loop (shown in Figure 4. 
Tasks behavior are verified using the “Oscilloscope” option 
in PicSimLab, which the pins, V/div scale and ms/div scale 
can be configured (shown in Figure 4). 

 

 

 

Figure 4.  Scope screen with RD1 and RD2 and scope screen with RD3 
for Exercise 1, with 2V/div scale and 80ms/div scale. 

B. RTOS and FreeRTOS 

The functional characteristics of the real time operation 
system, with emphasis on preemption, task scheduling and 
task priority level are presented in this topic and compared 
to the functional characteristics of the cooperative 
multitasking [20]. The FreeRTOS is adopted in the course, 

as previously mentioned in Section 2, and functions 
regarding creation and management of tasks are explored.   

 
Exercise 2: Implement the Exercise 1 using the 

FreeRTOS. 
Note: show the code, the scope screen with RD1 and 

RD2 pins and the scope screen with RD3 pin. 
With FreeRTOS will be necessary to use just three 

independent tasks. The advantage of using an RTOS is 
even more evident to students when implementing 
Exercise 3: 

 
Exercise 3: add to Exercise 2 a fourth task in which a 

square wave must be generated with 10Hz frequency and 
60% duty cycle on the RD4 pin (60ms at high logic level 
and 40ms at low logic level). 

Note1: An RTOS may or may not be used, but the tasks 
must be performed without delay; 

Note2: show the code, the scope screen with RD1 and 
RD2 pins and the scope screen with RD3 and RD4 pins. 

 
Students should verify that the execution time in which 

this new task is repeated is not a multiple of 80ms, and 
without the use of FreeRTOS it will be necessary to create 
a new state machine, much more complex, with a great 
chance of failures and that will affect tasks that were 
already implemented. With the use of FreeRTOS, a fourth 
task will be created independently (shown in Figure 5), 
without impacting the other tasks already implemented. 

 

 

 

Figure 5.  Scope screen with RD1 and RD2 and scope screen with RD3 
and RD4 for Exercise 3. 

C. Queues 

In this topic are presented the functional structure of 
queues, mainly regarding the writing and reading of 
sequential dada, using the FreeRTOS functions [15]. 

Exercise 4: Implement a system based on the 
PIC18F4550 using the PicSimLab software and the 
FreeRTOS, in which the following tasks must be 
performed: 



JOURNAL OF ONLINE ENGINEERING EDUCATION, VOL. 11, NO. 2, ARTICLE 1 
 

 

- check if the RB0, RB1 and RB2 button were pressed 
and then released with 100ms delay; 

- if the RB0 button was pressed and then released, D0 
LED should flash with 2.5Hz frequency and 50% duty-
cycle for 2s. For RB1 button, D0 LED should flash with 
5Hz frequency and 50% duty-cycle for 2s. For RB2 button, 
D0 LED should flash with 10Hz frequency and 50% duty-
cycle for 2s.  

Note 1: it is important that regardless of the number of 
times the buttons are pressed and released, D0 LED is 
activated the same number of times and in the order in 
which the buttons were pressed; 

Note 2: button pressed is equivalent to logic level 0; 
Note 3: D0 LED is interfaced with RD0 pin; 
Note 4: show the code and the scope screens for each 

D0 LED frequency. 
 
The use of the queue ensures that D0 LED is activated 

following the number of times and in the order in which 
the buttons were pressed (Figure 6). It’s also important 
highlight in the code that the task that waits data in the 
queue keeps in the blocked state while the queue is empty.   

 

 
Figure 6.  Buttons and D0 LED used in Exercise 4. 

D. Binary Semaphores 

In this topic are presented the functional structure of 
binary semaphores, mainly regarding the activation and 
verification of the semaphore, using the FreeRTOS 
functions [15]. 

 
Exercise 5: Implement a system based on the 

PIC18F4550 using the PicSimLab software and the 
FreeRTOS, in which the following tasks must be 
performed: 

- check the receipt through serial communication (9600 
bps) of the following messages: "D1","D2", 
"D3","D4","D5","D6","D7","D8","D9","T2","T4","T6" 
and 'S'. After receiving any of these messages, the 
microcontroller should return “OK”; 

- the duty cycle of the 1Hz PWM signal to be generated 
on D1 LED must be configured with the messages between 
‘D1’ and ‘D9’. Ex: ‘D2’ -> 20%; 

- the duration of the 1Hz PWM signal to be generated 
on D1 LED must be configured with the messages "T2" (2 
seconds), "T4" (4 seconds) and "T6" (6 seconds); 

- the 1Hz PWM signal must be generated only with the 
receipt of the 'S' character. 

- toggle D0 LED each 100ms; 
Note: show the code, a scope screen with D0 and D1 

LEDs for the 70% duty cycle setting and 6s duration (show 
the serial terminal screen (CuteCom) with the answer to 
these settings). 
 

The serial communication can be verified using the 
“Serial Terminal” option in PicSimLab (shown in Figure 
7). 

 

 
Figure 7.  Serial Terminal for Exercise 5. 

Students should verify that the detection of the 
characters must occur as soon as possible by the 
microcontroller (fast handler) in the interruption, 
activating a semaphore that will unblock the task 
responsible for response message and the generation of the 
PWM signal (slow handler). 

E. Counting semaphores 

The functional structure of counting semaphores is 
presented in this topic as an evolution of the binary 
semaphores, which is “memorized” the number of times 
that the semaphore is activated. FreeRTOS functions [15] 
regarding counting semaphores management also are 
presented. 

 
Exercise 6: Implement a system based on the 

PIC18F4550 using the PicSimLab software (shown in 
Figure 8) and the FreeRTOS, in which the following tasks 
must be performed: 

- check if the RB0 button was pressed and then released 
with 100ms delay; 

- check if the RB1 button was pressed and then released 
with 100ms delay; 

- if the RB0 button was pressed and then released, D0 
LED should flash with 10Hz frequency and 50% duty-cycle 
for 2s.  

- if the RB1 button was pressed and then released, the 
cooler works for 2s.  

Note 1: it is important that regardless of the number of 
times the buttons are pressed and released, D0 LED and 
cooler are activated the same number of times in which the 
buttons were pressed; 

Note 2: it is important that the execution of a task that 
“depends” on another task is in the blocked state 
whenever possible; 



JOURNAL OF ONLINE ENGINEERING EDUCATION, VOL. 11, NO. 2, ARTICLE 1 
 

 

Note 3: button pressed is equivalent to logic level 0; 
Note 4: D0 LED is interfaced with RD0 pin and the 

cooler is interfaced with pin RC2 pin. 
Note 5: show the code, a scope screen with D0 LED and 

a scope screen with RC2 pin. 
                          

 

Figure 8.  Cooler used in Exercises 6 and 8. 

The use of the counting semaphores ensures that D0 
LED and the cooler are activated following the number of 
times in which the buttons were pressed. Unlike the queue, 
it is not necessary to distinguish different tasks that block 
a same task. 

It’s also important highlight in the code that the task that 
waits the activated semaphores keeps in the blocked state 
while the semaphores is disable.   

F. Event group 

In this topic are presented the functional structure of 
event group, mainly regarding the activation, distinction of 
events and verification of the activated events, using the 
FreeRTOS functions [15]. 

 
Exercise 7: Implement again the Exercise 4. It’s not 

important that regardless of the number of times the 
buttons are pressed and released, D0 LED is activated the 
same number of times and in the order in which the buttons 
were pressed. 

Note 1: it is important that the execution of a task that 
“depends” on another task is in the blocked state 
whenever possible; 

Note 2: show the code and the scope screens for each 
D0 LED frequency. 

 
Students should verify that event group using unlike the 

queue is possible because It isn’t important that D0 LED 
is activated the same number of times and in the order in 
which the buttons were pressed. The required distinction 
of events for this exercise is correctly provided by event 
group and requires less program and data memory than 
using the queue.    

G. Resources management 

Resource management using critical sections and 
binary semaphores are explored in this topic, using the 
FreeRTOS functions [15]. 
 

Exercise 8: Implement a system based on the 
PIC18F4550 using the PicSimLab software and the 
FreeRTOS (shown in Figure 8), in which the following 
tasks must be performed: 

- PicSimLab has a temperature sensor with a linear 
behavior of 2.5mV/ºC. Make a temperature control, which 
keeps the temperature read by the sensor between 30 and 
40ºC. Read the temperature of the sensor using the A/D 
converter every 3s and with the heating resistance always 
on, turn on the fan when the temperature is above 40ºC 
and turn off it when the temperature is below 30ºC. Send 
the temperature value to the PC via serial communication. 

- Every time the “T” character is received from the PC, 
the temperature value must be sent immediately to the PC;
  

- Every time the “L” character is received from the PC, 
the fan must be turn on for 4 seconds continuously, without 
interruptions; 

- Every time the “D” character is received from the PC, 
the fan must be turn off for 4 seconds continuously, without 
interruptions. 

Note 1: temperature sensor is interfaced with RA2 pin, 
heating resistor is interfaced with RC5 pin and the cooler 
is interfaced with RC2 pin; 

Note 2: show the code and the serial terminal screen 
(CuteCom) with the answer to the messages. 

 
In this exercise, the students should adopt the critical 

section in the task where the cooler must be turned on or 
turned off for 4 seconds continuously, without 
interruptions of the task that every 3s could change the 
cooler operation. 

III. RESULTS 

The Embedded System course is a compulsory semester 
course for undergraduates of the Control and Automation 
Engineering, Electronic Engineering and Computer 
Engineering. 

By the end of the Embedded Systems remote course, a 
questionnaire was applied to the students using Google 
Forms. In addition to the 5 questions, the questionnaire 
allowed students to comment about the course and 
contribute with suggestions. Tables 2-6 show the 
percentages of the answers for each question, followed by 
comments from the author and the students. 

Most students agree that PicSimLab successfully 
replaced the use of the development kit for practical 
learning. A common comment of the students is that 
although the software does not allow to see in practice the 
functioning of the system, as the development kit, the 
software was essential for the remote course. 

 



JOURNAL OF ONLINE ENGINEERING EDUCATION, VOL. 11, NO. 2, ARTICLE 1 
 

 

TABLE II                                                                                                                   
QUESTION 1 

The development 
kit based on the 
PIC18F4550 was 
used in the lab 
classes of 
Microcontrollers 
course and at the 
beginning of 
Embedded 
System. Has the 
use of PicSimLab 
successfully 
replaced the use 
of the 
development kit 
for practical 
learning in the 
Embedded 
Systems remote 
course? 
 

Electronic 
engineering 

students 

Computer 
engineering 

students 

Control and 
automation 
engineering 

students 

Response A: I 
totally agree 

66.7% 88.9% 85.7% 

Response B: I 
agree in part 

33.3% 11.1% 14.3% 

Response C: I 
don’t agree 

0% 0% 0% 

TABLE III                                                                                                            
QUESTION 2 

Even with the 
return of 
presential 
classes, should 
the PicsimLab 
software be 
adopted at least 
as a support tool 
for practical 
learning in the 
Embedded 
Systems course? 
 

Electronic 
engineering 

students 

Computer 
engineering 

students 

Control and 
automation 
engineering 

students 

Response A: I 
totally agree 

83.3% 100% 85.7% 

Response B: I 
agree in part 

0% 0% 14.3% 

Response C: I 
don’t agree 

16.7% 0% 0% 

 
For this question, the most of students also agreed that 

the PicSimLab should be adopted in some way in the 
Embedded Systems in-class course. The sstudent’s 
commented that using the software it is always possible to 
test the codes any time, which helps in learning. 

TABLE IV                                                                                                                   
QUESTION 3 

How do you 
evaluate the 
other tools 
(Google Meet, 
Moodle and 
other software) 
used in the 
remote course? 
 

Electronic 
engineering 

students 

Computer 
engineering 

students 

Control and 
automation 
engineering 

students 

Response A: 
Excellent 

58.3% 55.6% 85.7% 

Response B: 
Very good 

41.7% 44.4% 14.3% 

Response C: 
Good 

0% 0% 0% 

Response D: 
Regular 

0% 0% 0% 

Response E: Bad 0% 0% 0% 

All the students agree that the set of software and on-
line services used in the Embedded Systems remote course 
was excellent or very good. In the comments, the students 
highlighted that the possibility of watching the recorded 
classes again through google meet significantly 
contributed to the understanding of the course, allowing 
later doubts to be resolved. 

TABLE V                                                                                                                   
QUESTION 4 

How do you rate 
the evaluation 
system employed 
in the Embedded 
Systems remote 
course? 
 

Electronic 
engineering 

students 

Computer 
engineering 

students 

Control and 
automation 
engineering 

students 

Response A: 
Excellent 

58.4% 55.6% 78.6.3% 

Response B: Very 
good 

33.3% 44.4% 21.3% 

Response C: Good 8.3% 0% 7.1% 
Response D: 
Regular 

0% 0% 0% 

Response E: Bad 0% 0% 0% 

 
For this question, not all the students rated the 

evaluation system employed in the remote course as 
excellent or very good, which indicates a need for 
improvement. A common suggestion is for students to 
develop a personal project with the system functionality 
subsequently demonstrated and evaluated through a report. 

TABLE VI                                                                                                                   
QUESTION 5 

Overall, how 
do you rate the 
Embedded 
Systems remote 
course? 
 

Electronic 
engineering 

students 

Computer 
engineering 

students 

Control and 
automation 
engineering 

students 

Response A: 
Excellent 

58.3% 66.7% 78.6% 

Response B: 
Very good 

41.7% 33.3% 21.4% 

Response C: 
Good 

0% 0% 0% 

Response D: 
Regular 

0% 0% 0% 

Response E: 
Bad 

0% 0% 0% 

 
All the students rated the course as excellent or very 

good, even with the necessary adaptations to offer the 
course in remote mode. 

IV. CONCLUSION 

This paper presents an embedded systems remote 
course that was taught in different engineering bachelors 
at Universidade Tecnológica Federal do Paraná (UTFPR), 
Cornélio Procópio campus. 

Even with the excellent or very good evaluation of the 
course by the students, mainly regarding the use of the 



JOURNAL OF ONLINE ENGINEERING EDUCATION, VOL. 11, NO. 2, ARTICLE 1 
 

 

PicSimLab to explore the topics of the course in the on-
line theorical classes and to implement the exercises of the 
lists, a necessary improvement in the course is the 
inclusion of a personal project as an evaluation item. 
However, contrary to suggestion of the students regarding 
the evaluation of the project through a report, a remote 
evaluation would also be necessary, in which the 
functionality system could be demonstrated and the 
students could be questioned. 

The positive evaluation of students encourages the 
continuous improvement of the embedded systems remote 
course and its application even in a scenario that allows the 
realization of presential classes. 

REFERENCES 
[1] H. Lim, H. Yu and T. Suh, “Using Virtual Platform in Embedded 

System Education,” Comput Appl Eng Educ, vol. 20, pp. 346–355, 
2012.  

[2] M. Jiménez, R. Palomera and I. Couvertier, Introduction to 
Embedded Systems. New York: Springer, 2014. 

[3] D. M. Laverty, J. Milliken, M. Milford and M. Cregan, 
“Embedded C programming: a practical course introducing 
programmable microprocessors,” European Journal of Engineering 
Education, vol. 37, 2012. 

[4] Y. Luo, S. Qin and D. Wang, “Reform of embedded system 
experimente course based on engineering education accreditation,” 
International Journal of Electrical Engineering & Education, pp. 
1–14, 2020. 

[5] Texas A. M. University, Computer Engineering 2020-2021 Full 
Degree Plan. https://engineering.tamu.edu/cse/academics/degrees/ 
undergraduate/bs-ce.html  

[6] Korea University, Official Study Plan for Bachelor in Electrical 
Engineering. http://eng.korea.edu/ee_en/subject/ course_guide.do 

[7] University of Cape Town, Official Study Plan for Bachelor of 
Science in Engineering in Electrical and Computer Engineering. 
http://www.ee.uct.ac.za/bachelor-science-engineering-electrical-
and-computer-engineering 

[8] Victoria University, Official Study Plan for Electrical and 
Electronic Engineering BEng. https://www.vu.edu.au/courses/ 
bachelor-of-engineering-honours-electrical-and-electronic-enginee 
ring-nhee   

[9] Coventry University, Official Study Plan for Electrical and 
Electronic Engineering MEng/BEng. https://www.coventry.ac.uk/ 
course-structure/ug/2020-21/eec/electrical-and-electronic-engineer 
ing-beng 

[10] Universidade do Porto, Official Study Plan for the Integrated 
Master in Electrical and Computer Engineering. https://sigarra.up. 
pt/feup/pt/ucurr_geral.ficha_uc_view?pv_ocorrencia_id=436930  

[11] Microchip Inc., C18 Compiler version 3.46, 2019. 
[12] Microchip Inc., Mplab IDE version 8.2, 2009. 
[13] R. T. Engineers, What is a RTOS? [Online]. Available at 

http://www.freertos.org/about-RTOS.html. 
[14] L. C. Gamboa, PicSimLab version 0.8.1 [Online]. Available at 

https://github.com/lcgamboa/picsimlab/releases. 
[15] R. Barry, Mastering the FreeRTOS Real Time Kernel. Bristol: Real 

Time Engineers Ltd., 2016. 
[16] X. Vilajosana, J. Llosa, I. Vilajosana and J. Prieto-Blàsquez, 

“Arp@: Remote Experiences with Real Embedded Systems,” 
Comput Appl Eng Educ, vol. 22, pp. 639-648, 2014. 

[17] S. Chtourou, M. Kharrat, N. B. Amor, M. Jallouli and M. Abid,” 
Using IOIOAI in introductory courses to embedded systems for 
engineering students: a case study,” International Journal of 
Electrical Engineering & Education, vol. 55, pp. 62–78, 2018. 

[18] Kopják and J. Kovács, 2012. Timed cooperative multitask for tiny 
real-time embedded system. In IEEE 10th International Symposium 
on Applied Machine Intelligence and Informatics.  

[19] Microchip Inc, 8-bit PIC Microcontroller Peripheral Integration 
Quick Reference Guide, 2018. 

[20] M. Siegesmund, Embedded C Programming: Techniques and 
Applications of C and PIC MCUS. Boston: Newnes, 2015.  

 

AUTHORS 

André Sanches Fonseca Sobrinho is an Assistant 
Professor at Electrical Engineering Department, 
Universidade Tecnológica Federal do Paraná, Cornélio 
Procópio, PR Brazil, (e-mail: andresobrinho@ 
utfpr.edu.br). 

This work was supported in part by Universidade Tecnológica Federal do 
Paraná. 

 
 


